师资团队

何航

邮箱:hehang@pku.edu.cn

研究领域:生物信息学,植物基因组学,植物多组学

简介

个人简介

2009 - 2011 , 博士后 , 生物信息学 , 44118太阳成城集团

2004 - 2009 , 理学博士 , 生物信息学 , 中科院生物物理所

2000 - 2004 , 理学学士 , 应用数学 , 44118太阳成城集团

2011 - 2020 , 副研究员 , 44118太阳成城集团

2020 – 至今,研究员 , 44118太阳成城集团

 

研究工作

1.数据库与工具(Databases and Tools)

首个西瓜T2T基因组与突变体库

The first T2T watermelon genome and the mutant library

Website: http://www.watermelondb.cn  

Related News: http://www.pku-iaas.edu.cn/kyjz/449.html

Publication: https://doi.org/10.1016/j.molp.2022.06.010

 

猕猴桃属基因组数据库

Genomic Database for Actinidia Species

Website: http://182.92.183.62/  

New Website: http://8.140.245.74:6688 

Related News: http://www.pku-iaas.edu.cn/kyjz/622.html  

                        https://sdxw.iqilu.com/share/dHYtMjEtNTMxNzcxNQ.html#/

Publication: https://doi.org/10.1016/j.molp.2022.12.022

 

拟南芥转光发育单细胞数据库

Single Cell Atlases of Arabidopsis De-Etiolating Seedlings

Website: /index.html  

New Website: 8.140.245.74:6699

 

2.多组学(Multi-Omics)研究

生物信息学是在生命科学的研究中,利用信息技术对大量而复杂的生物数据进行存储、检索和分析,进而揭示生物学奥秘的新兴学科。近年来,随着基因组序列的不断完善和各种大通量采集数据实验方法的开发,对数据的发掘和理解也在生物研究中起到越来越重要的作用。本课题组通过长期基因组序列变异、转录组、表观遗传组及表型组的研究,建立起完善的生物信息分析平台,并将不同的组学数据整合,发掘基因在不同组学数据中的关联,形成层级或网络的调控关系。并通过多组学方法发现新的调控因子和调控通路。

 

3.杂种优势研究

杂交优势是自然界普遍存在的一种复杂生物学现象,在农业生产中获得了广泛的应用。但是杂交优势的分子遗传机理迄今尚不清楚。随着分子生物学、基因组学和生物信息学研究的深入和发展,利用系统生物学手段开展杂交优势分子机理的研究,具有重要的科学意义和实际应用价值。基因型异质的亲本其杂交子一代许多性状上不同于双亲,这必然涉及到亲本基因组在杂交遗传背景中相互作用而引起基因表达调控发生变化。目前,我们利用高通量测序技术对具有不同优势的杂交组合的亲本和子一代不同组织在不同环境条件下进行全基因组基因差异表达分析,并进一步分析造成这种差异表达基于顺式作用元件和反式调控因子DNA序列多态性的遗传机制,以及基于DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA的表观遗传机制,全面探索杂交优势的可能分子机制。

 

4.全基因组选择

随着更多新技术在农业生产中应用,我们可以从大量基因型和表型数据出发,快速发掘水稻玉米等作物中的功能基因,同时整合多种有利性状,开展全基因组选择育种。目前,本课题组通过开发的多个高通量的SNP标记芯片结合测序和表型鉴定,对各种水稻、玉米的种质资源和杂交分离群体进行分型分析,在全基因组层次建立性状与标记的关联性,进一步通过数学建模,预测品种的性状表现,开展分子设计育种。

 

代表论文

(#: Co-author; *: Corresponding author)

1. Zhang Y#, Fu J#, Wang K#, Han X#, Yan T, Su Y, Li Y, Lin Z, Qin P, Fu C, Deng XW, Zhou D*, Yang Y*, He H*. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol J. 2022 Jun 24.

2. Deng Y#, Liu S#, Zhang Y#, Tan J, Li X, Chu X, Xu B, Tian Y, Sun Y, Li B, Xu Y, Deng XW, He H*, Zhang X*. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022 Jun 22:S1674-2052(22)00192-7.

3. Cui D#, Zhou H#, Ma X#, Lin Z, Sun L, Han B, Li M, Sun J, Liu J, Jin G, Wang X, Cao G, Deng XW, He H*, Han L*. Genomic insights on the contribution of introgressions from Xian/indica to the genetic improvement of Geng/japonica rice cultivars. Plant Comm. 2022 May 9;3(3):100325.

4. Li G#, Wang L#, Yang J#*, He H#, Jin H#, Li X#, Ren T#, Ren Z, Li F, Han X, Zhao X, Dong L, Li Y, Song Z, Yan Z, Zheng N, Shi C, Wang Z, Yang S, Xiong Z, Zhang M, Sun G, Zheng X, Gou M, Ji C, Du J, Zheng H, Dolezel J, Deng XW, Stein N, Yang Q*, Zhang K*, Wang D*. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet. 2021 Apr;53(4):574-584.

5. Wang B#, Lin Z#, Li X#, Zhao Y, Zhao B, Wu G, Ma X, Wang H, Xie Y, Li Q, Song G, Kong D, Zheng Z, Wei H, Shen R, Wu H, Chen C, Meng Z, Wang T, Li Y, Li X, Chen Y, Lai J, Hufford MB, Ross-Ibarra J, He H*, Wang H*. Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet. 2020 Jun;52(6):565-571.

6. Sun L#, Jing Y#, Liu X#, Li Q#, Xue Z, Cheng Z, Wang D, He H*, Qian W*. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun. 2020 Apr 20;11(1):1886.

7. Lin Z, Qin P, Zhang X, Fu C, Deng H, Fu X, Huang Z, Jiang S, Li C, Tang X, Wang X, He G, Yang Y*, He H*, Deng XW*. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4623-4631.

8. Han X, Chang X, Zhang Z, Chen H, He H*, Zhong B*, Deng XW*. Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization. Mol Plant. 2019 Jun 3;12(6):847-862.

9. Wang Z#, Li J#, Chen S#, Heng Y#, Chen Z#, Yang J, Zhou K, Pei J, He H*, Deng XW*, Ma L*. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc Natl Acad Sci U S A. 2017 Nov 6.

10. The IC4R Project Consortium., Information Commons for Rice (IC4R). Nucl. Acids Res. 2015 Oct; doi: 10.1093/nar/gkv1141.

11. Zhou D#, Chen W#, Lin Z#, Chen H#, Wang C#, Li H, Yu R, Zhang F, Zhen G, Yi J, Li K, Liu Y, Terzaghi W, Tang X, He H*, Zhou S*, Deng XW*., Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding., Plant Biotechnol J. 2015 Jun 10. doi: 10.1111/pbi.12409.

12. Chen H#, Xie W#, He H#, Yu H#, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X*, Zhou F*, Deng XW*, Zhang Q*., A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Mol Plant 2014 Mar;7(3):541-53.

13. Shen H#, He H#, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW., Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012, 24(3):875-92.

14. Charron JB#, He H#, Ellinga AA, Deng XW., Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell. 2009, 21(12):3732-48.

15. Zhang HY#, He H#, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW., A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant. 2008 Sep;1(5):720-31.